GPX-Visualizer/main.cpp

303 lines
8.3 KiB
C++

#include "camera/Camera.h"
#include "Xml.h"
#include "Track.h"
#include <GL/glut.h>
#include <experimental/filesystem>
#include <syslog.h>
#include <cstdlib>
#include <iostream>
#include <math.h> // fmod
#include <unistd.h>
#include <vector>
GLfloat light_diffuse[] = {1.0, 0.0, 0.0, 1.0}; /* Red diffuse light. */
GLfloat light_position[] = {1.0, 1.0, 1.0, 0.0}; /* Infinite light location. */
Camera camera;
// TODO(dev):
// As per https://www.opengl.org/resources/libraries/glut/spec3/node11.html
// "Therefore, GLUT programs should not assume the window was created at the specified size or position.
// A GLUT program should use the window's reshape callback to determine the true size of the window."
void draw_origin()
{
// X:
glBegin(GL_LINE_STRIP);
glColor3d(0, 0, 0);
glVertex3f(-10.0f, 0.0f, 0.0f);
glColor3d(255, 0, 0);
glVertex3f(0.0f, 0.0f, 0.0f);
glColor3d(0, 0, 0);
glVertex3f(10.0f, 0.0f, 0.0f);
glEnd();
// Y:
glBegin(GL_LINE_STRIP);
glVertex3f(0.0f, -10.0f, 0.0f);
glColor3d(0, 255, 0);
glVertex3f(0.0f, 0.0f, 0.0f);
glColor3d(0, 0, 0);
glVertex3f(0.0f, 10.0f, 0.0f);
glEnd();
// Z:
glBegin(GL_LINE_STRIP);
glVertex3f(0.0f, 0.0f, -10.0f);
glColor3d(0, 0, 255);
glVertex3f(0.0f, 0.0f, 0.0f);
glColor3d(0, 0, 0);
glVertex3f(0.0f, 0.0f, 10.0f);
glEnd();
}
void display()
{
// RESET:
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glLineWidth(1.0f);
//camera.RotateYaw(0.01);
static double asdf = -10.0;
asdf += 0.02;
if(asdf > 15.0)
asdf = -15.0;
// gluLookAt(-15.0, 30.0, -asdf, /* eye is at */
// 0.0, 5.0, 0.0, /* center is at */
// 0.0, 1.0, 0.0); /* up is in positive Y direction */
gluLookAt(-20.0, 20.0, 8.0, /* eye is at */
-5.0, 2.5, 0.0, /* center is at */
0.0, 1.0, 0.0); /* up is in positive Y direction */
draw_origin();
// DRAW TRACKS:
for(auto track : track_groups[random_group].second)
draw(*track);
glutSwapBuffers();
}
void init()
{
glColor3d(1.0, 1.0, 1.0);
/* Enable a single OpenGL light. */
// glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
// glLightfv(GL_LIGHT0, GL_POSITION, light_position);
// glEnable(GL_LIGHT0);
// glEnable(GL_LIGHTING);
/* Use depth buffering for hidden surface elimination. */
glEnable(GL_DEPTH_TEST);
/* Setup the view of the cube. */
glMatrixMode(GL_PROJECTION);
gluPerspective( /* field of view in degree */ 70.0,
/* aspect ratio */ 1.0,
/* Z near */ 1.0, /* Z far */ 1000.0);
glMatrixMode(GL_MODELVIEW);
gluLookAt(-10.0, 25.0, -10.0, /* eye is at */
0.0, 0.0, 0.0, /* center is at */
0.0, 1.0, 0.0); /* up is in positive Y direction */
}
int main(int argc, char *argv[])
{
if(argc != 2)
{
std::cerr << "You pust pass the folder which contains gpx files." << std::endl;
return -1;
}
// dvereb:
srand(time(NULL));
std::vector<std::string> files;
for(const auto& entry : std::experimental::filesystem::directory_iterator(argv[1]))
{
auto extension = entry.path().extension();
if(extension == ".gpx")
files.push_back(entry.path().string());
}
for(auto file : files)
ParseFile(tracks, file);
// NORMALIZE TRACKS TO VIEWPORT:
bool first = true;
// NOTE(dev):
// We're trying to determine groups of tracks that overlap
// First, put all the tracks in their own group
// Second, keep checking to see if any groups overlap until there are no changes
// std::vector<std::pair<Track, std::vector<const Track*>>> track_groups;
for(const auto &track : tracks)
{
// Build a header-only copy of each track
Track header;
header.min = track.min;
header.max = track.max;
std::vector<const Track*> vec;
vec.push_back(&track);
std::pair<Track, std::vector<const Track*>> p;
p.first = header;
p.second = vec;
// Point to the actual Track with the header info
track_groups.push_back(p);
}
for(bool no_changes = false; !no_changes; )
{
no_changes = true;
for(auto i = 0; i < track_groups.size(); ++i)
{
for(auto j = 0; j < track_groups.size(); /* no increment here */)
{
if(j == i)
{
++j;
continue;
}
bool lat_overlap = false;
bool lon_overlap = false;
if(track_groups[j].first.min.lat <= track_groups[i].first.max.lat
&& track_groups[j].first.max.lat >= track_groups[i].first.min.lat)
lat_overlap = true;
if(track_groups[j].first.min.lon <= track_groups[i].first.max.lon
&& track_groups[j].first.max.lon >= track_groups[i].first.min.lon)
lon_overlap = true;
if(lat_overlap && lon_overlap)
{
no_changes = false;
track_groups[i].first.min.lat = std::fmin(track_groups[i].first.min.lat,
track_groups[j].first.min.lat);
track_groups[i].first.min.lon = std::fmin(track_groups[i].first.min.lon,
track_groups[j].first.min.lon);
track_groups[i].first.min.ele = std::fmin(track_groups[i].first.min.ele,
track_groups[j].first.min.ele);
track_groups[i].first.max.lat = std::fmax(track_groups[i].first.max.lat,
track_groups[j].first.max.lat);
track_groups[i].first.max.lon = std::fmax(track_groups[i].first.max.lon,
track_groups[j].first.max.lon);
track_groups[i].first.max.ele = std::fmax(track_groups[i].first.max.ele,
track_groups[j].first.max.ele);
// Add tracks vector to make one big one
track_groups[i].second.insert(track_groups[i].second.end(),
track_groups[j].second.begin(),
track_groups[j].second.end());
track_groups.erase(track_groups.begin() + j);
if(j < i)
--i;
}
else
++j;
}
}
}
std::cout << "Generated " << track_groups.size() << " track groups:" << std::endl;
int count = 0;
for(const auto &track_group : track_groups)
{
++count;
std::cout << "Track #" << count << ", including " << track_group.second.size()
<< " tracks:" << std::endl;
std::cout << " lat"
<< " " << track_group.first.min.lat
<< "-" << track_group.first.max.lat << std::endl;
std::cout << " lon"
<< " " << track_group.first.min.lat
<< "-" << track_group.first.max.lat << std::endl;
std::cout << " ele"
<< " " << track_group.first.min.lat
<< "-" << track_group.first.max.lat << std::endl;
}
std::cout << std::endl;
random_group = 0;
float min_lat, max_lat, min_lon, max_lon, min_ele, max_ele;
for(auto &track : track_groups[random_group].second)
{
for(auto &p : track->points)
{
if(first)
{
first = false;
min_lat = max_lat = p.lat;
min_lon = max_lon = p.lon;
min_ele = max_ele = p.ele;
}
else
{
if(p.lat < min_lat)
min_lat = p.lat;
else if(p.lat > max_lat)
max_lat = p.lat;
if(p.lon < min_lon)
min_lon = p.lon;
else if(p.lon > max_lon)
max_lon = p.lon;
if(p.ele < min_ele)
min_ele = p.ele;
else if(p.ele > max_ele)
max_ele = p.ele;
}
}
}
std::cout << "min_lat: " << min_lat << " max_lat: " << max_lat << ", "
<< "min_lon: " << min_lon << " max_lon: " << max_lon << ", "
<< "min_ele: " << min_ele << " max_ele: " << max_ele << std::endl;
auto lat_diff = min_lat + ((max_lat - min_lat) / 2.0);
auto lon_diff = min_lon + ((max_lon - min_lon) / 2.0);
auto ele_diff = min_ele;
for(auto &track : track_groups[random_group].second)
{
for(auto &track : tracks)
{
track.max.lat -= lat_diff;
track.max.lon -= lon_diff;
track.max.ele -= ele_diff;
track.min.lat -= lat_diff;
track.min.lon -= lon_diff;
track.min.ele -= ele_diff;
for(auto &p : track.points)
{
p.lat -= lat_diff;
p.lon -= lon_diff;
p.ele -= ele_diff;
p.lat *= 500;
p.lon *= 500;
p.ele *= 0;
}
}
}
glutInitDisplayMode(GLUT_DOUBLE | GLUT_DEPTH | GLUT_ALPHA | GLUT_MULTISAMPLE);
glutInit(&argc, argv);
glutCreateWindow("3D GPX Viewer");
glutDisplayFunc(display);
// NOTE(dev): lmfao:
// glutSetCursor(GLUT_CURSOR_SPRAY);
glutSetCursor(GLUT_CURSOR_FULL_CROSSHAIR);
init();
camera.Init();
camera.Fly(50);
camera.RotatePitch(-89 * M_PI / 180.0);
glutMainLoop();
return 0;
}